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A general analysis of undistorted propagation of localized wave packets in photonic crystals based on a
Wannier-function expansion technique is presented. Different kinds of propagating and stationary spatiotem-
poral localized waves are found from an asymptotic analysis of the Wannier function envelope equation.
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I. INTRODUCTION

Spatiotemporal broadening of localized wave packets
with finite energy due to the effects of diffraction and disper-
sion is a universal and challenging phenomenon in any
physical context involving wave propagation. If the finite
energy constraint is left, special spatiotemporal waves with a
certain degree of localization in space and/or in time, capable
of propagating free of diffraction and/or temporal dispersion,
can be constructed. Localized waves of this type include,
among others, Bessel beams, focus-wave modes, X-type
waves, and pulsed Bessel beamsf1–5g. Though these waves
can be only approximately realized in practice, several ex-
periments in acoustic and optical fields have been reported so
far showing nearly-undistorted localized wave propagation.
As the existence of undistorted progressive localized waves
in vacuum has been known for many years and lead to long-
standing studiesf1,2g, with special attention devoted toward
their superluminal or subluminal character and to their finite-
energy realizations, in the past few years these studies have
been extended to dispersive optical mediaf3–5g, and remark-
ably the spontaneous generation of localized and nonspread-
ing wave packets mediated by optical nonlinearities has been
predictedf6g and experimentally observedf7g using standard
femtosecond pulsed lasers. Very recently, in a few works
f8–10g the issue of spatial or spatiotemporal wave localiza-
tion in periodic media has been addressed, and the possibil-
ity of exploiting well-established anomalous diffractive and
dispersive properties of photonic crystalssPCsd f11,12g to
induce novel spatiotemporal wave localization mechanisms
has been proposed. Specifically, these studies have been con-
cerned with localization of Bose-Einstein condensates in a
one-dimensional optical lattice without any trapping poten-
tial f8g, with two-dimensionals2Dd spatial Bessel X waves in
weakly coupled 2D waveguide arrays showing bidispersive
propertiesf9g and with three-dimensionals3Dd out-of-plane
X-wave localization in 2D PCsf10g. Spatiotemporal waves
considered in these works rely on some specific models and
often usead hoc approximations, e.g., reduced coupled-
mode equations, paraxiality, weak-coupling limit, and con-
tinuum approximations. So far, a general framework to cap-
ture spatiotemporal wave localization and propagation in
PCs and the derivation of a general wave equation, valid
regardless of the specific system under investigation and
with a wide range of applicability, is still lacking.

The aim of this work is to provide a general analytical
framework to study spatiotemporal wave propagation in 2D

and 3D PCs based on the use of Wannier functions, which
have been introduced in the context of PCs to treat localized
modes, such as the bound states of impurities or lattice de-
fectsf13–15g. A general asymptotic analysis of the envelope
equation for the Wannier functions allows one to capture the
existence and properties of localized nonspreading wave
packets in PCs in terms of localized solutions of canonical
wave equations, such as the Schrödinger equation, the Helm-
holtz equation and the Klein-Gordon equation.

II. WANNIER FUNCTION ENVELOPE EQUATION

The starting point of the analysis is provided by the vec-
torial wave equation for the magnetic fieldH =Hsr ,td in a
PC with a periodic relative dielectric constantesr d,

= 3 S1

e
= 3 HD = −

1

c2

]2H

]t2
, s1d

wherec is the speed of light in vacuum. In writing Eq.s1d,
we assumed that the material dispersion can be neglected,
which is a reasonable assumption since in PCs with a rela-
tively strong contrast index band dispersion broadly domi-
nates over intrinsic material dispersion. To study the propa-
gation of a spatiotemporal wave packet, we can adopt the
method of the Wannier functions, which is commonplace in
the study of the quasi-classical electron dynamics in solids
f16,17g and recently applied to study localized modes and
defect structures in PCs with defectsf13,14g. We refer ex-
plicitly to a 3D PC structure, however a similar analysis can
be developed for a 2D PC. Let us first consider the mono-
chromatic Bloch-type solutions to Eq.s1d at frequencyv,
Hsr ,td=Hk,nsr dexps−ivtd, wherek lies in the first Brillouin
zone of the reciprocalk space,v=vnskd is the dispersion
curve for thenth band, andHk,nsr d are the band modes,
satisfying the conditionHk,nsr +Rd=Hk,nsr dexpsik ·Rd for
any lattice vectorR of the periodic dielectric function. The
Bloch functions Hk,nsr d are normalized such that
kHk8,n8 uHk,nl=VBZdn,n8dsk8−kd, whereVBZ=s2pd3/V is the
volume of the first Brillouin zone in the reciprocal space and
V is the volume of the real-space unit cell. For each band of
the PC, one can construct a Wannier functionWnsr d as a
localized superposition of Bloch functions of the band ac-
cording to
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Wnsr d =
1

VBZ
E

BZ

dk H k,nsr d. s2d

In the superposition, the phase of Bloch functionsHk,n can
be chosen such that the Wannier functionWnsr d is strongly
localized aroundr =0 with an exponential decay far fromr
=0. The Wannier functions satisfy the orthogonality condi-
tions kWn8sr −R8d uWnsr −Rdl=dn,n8dR,R8, and the following
relationship can be easily proven:

kWn8sr − R8du = 3 S1

e
= 3 DuWnsr − Rdl = dn,n8un,R8−R,

s3d

where un,R is the Fourier expansion coefficient of
the dispersion curve vn

2skd of the band,
un,R;s1/VBZdeBZ dk vn

2skdexps−ik ·Rd, i.e., vn
2skd

=oRun,R expsik ·Rd. We then look for a spatiotemporal wave
packet, which is a solution to Eq.s1d, as a superposition of
translated Wannier functions localized at the different lattice
points R of the periodic structure, with amplitudesfsR ,td
that depend on the lattice pointR and can vary in time, i.e.,
we set

Hsr ,td = o
R

fsR,tdWnsr − Rd. s4d

Note that, as we consider a pure periodic structure without
defects and neglect perturbation terms in Eq.s1d se.g., non-
linearitiesd, coupling among different bands does not occur
and in Eq.s4d the sum can be taken over a single band, of
indexn. Coupled-mode equations for the temporal evolution
of the amplitudesfsR ,td of Wannier functions at different
lattice points can be obtained after substitution of Eq.s4d into
Eq. s1d, taking the scalar product withWnsr −Rd and using
the orthogonality conditions of Wannier functions, together
with Eq. s3d. One obtains

]2fsR,td
]t2

+ o
R8

un,R8−R fsR8,td = 0. s5d

The solution to the coupled-mode equationss5d can be ex-
pressed asfsR ,td= fsr =R ,td, where thecontinuousfunction
fsr ,td of spacer and timet satisfies the partial differential
equation:

]2fsr ,td
]t2

+ vn
2s− i=rdfsr ,td = 0, s6d

and vn
2s−i=rd is the operator obtained after the substitution

k →−i=r in the Fourier expansion ofvn
2skd. It should be

noted that the differential equation for thecontinuous enve-
lope fsr ,td of the Wannier function wavepacketfEq. s4dg, as
given by Eq.s6d, is exact, and for any band of the PC an
envelope equation can be written, the specific details of the
band entering both in the dispersion curvevn

2skd and in the
shape of the corresponding Wannier functionWn fEq. s2dg.

III. SPATIAL AND SPATIOTEMPORAL
LOCALIZED WAVES

The most general solution to the Wannier-function enve-
lope equations6d is given by a superposition of functions
csr , ± td, wherecsr ,td is a solution to the wave equation:

i
]c

]t
= vns− i=rdc. s7d

We are now interested on the search for localized solutions to
Eq. s7d such thatucu corresponds to a wave propagating un-
distorted with a group velocityvg. To this aim, let us set
csr ,td=gsr ,tdexpsik0·r − iVtd, wherek0 is chosen inside the
first Brillouin zone in the reciprocal space and the frequency
V is chosen close tosbut not necessarily coincident withd
v0=vnsk0d. The envelopeg then satisfies the wave equation

i
]g

]t
= fvnsk0 − i=rd − Vgg. s8d

We first note that, ifg varies slowly with respect to the
spatial variablesr , at leading order one can expandvnsk0

− i=rd up to first order aroundk0; taking V=v0, one obtains
]g/]t+=kvn·=rg=0, i.e., one retrieves the well-known re-
sult for which an arbitrary 3D spatially-localized wave
packet travels undistorted, at leading order, with a group ve-
locity given by =kvn. Nevertheless, higher-order terms are
generally responsible for wave packet spreading, both in
space and time. In order to find propagation-invariant enve-
lope waveseven when dispersive termsare accounted for, let
us assume, without loss of generality, thats]vn/]kydk0
=s]vn/]kzdk0

=0, i.e., let us choose the orientation of thex
axis such that the wave packet group velocity=kvn is di-
rected along this axis, and let us look for a propagation-
invariant solution to Eq.s8d of the formg=gsx1,x2,x3d, with
x1=x−vgt, x2=y, andx3=z, traveling along thex axis with a
group velocityvg, which is left undetermined at this stage.
The functiong then satisfies the following equation:

− ivg
]g

]x1
= fvnsk0 − i=xd − Vgg, s9d

whose solution can be written formally as

gsx1,x2,x3d =E dQ2 dQ3 GsQ2,Q3dexpsiQ ·xd. s10d

In Eq. s10d, x=sx1=x−vgt ,x2=y,x3=zd, Q=sQ1,Q2,Q3d, G
is an arbitrary spectral amplitude, andQ1=Q1sQ2,Q3d is im-
plicitly defined by the followingdispersion relation:

vnsk0 + Qd − V − vgQ1 = 0. s11d

To avoid the occurrence of evanescentsexponentially-
growingd waves, the integral in Eq.s10d is extended over the
values ofsQ2,Q3d such thatQ1, obtained after solving Eq.
s11d, turns out to be real-valued. We note that, for anarbi-
trary spectral amplitudeG, Eq. s10d represents anexactso-
lution of the Wannier-function envelope equation, which
propagatesundistortedwith a group velocityvg, once the
proper band dispersion curvevnskd of the PC and corre-
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sponding dispersion relations11d are computed, e.g., by nu-
merical methods. Forsomespecific choices of the spectral
amplitudeG, in addition to undistorted wave propagation a
certain degree of spatiotemporal wave localization can be
obtained. It is worthwhile to get some explicit examples,
though approximate, of such 3D localized waves, admitting
the integral representation given by Eq.s10d, and relate them
to already known localized solutions to canonical wave
equationsf2g. To this aim, we develop an asymptotic analysis
of Eq. s11d by assuming that the spectral amplitudeG is
nonvanishing in a narrow interval aroundQ2=Q3=0, so that,
for V close tov0, the value ofQ1, as obtained from Eq.s11d,
is also close toQ1=0. In this case, an approximate expres-
sion for the dispersion relationQ1=Q1sQ2,Q3d can be ob-
tained by expanding in Eq.s11d the band dispersion curve
vnsk0+Qd at aroundk0. We should distinguish two cases,
depending on the value of the group velocityvg, which is
basically a free parameter in our analysis.

First case. The first case corresponds to the choice of a
group velocity vg different from sand enough far fromd
]vn/]kx. In this case, the leading-order terms entering in Eq.
s11d after a power expansion ofvnsk0+Qd are quadratic in
Q2, Q3 and linear inQ1; precisely, one has

S ]vn

]k1
− vgDQ1 + v0 − V +

1

2 o
i,j=2

3
]2vn

]ki ]kj
QiQj = 0, s12d

whereki =kx,y,z for i =1,2,3 and thederivatives of the band
dispersion curve are calculated atk =k0. If the approximate
expression ofQ1, given Eq.s12d, is introduced into Eq.s10d,
one can easily show that the envelopegsx1,x2,x3d satisfies
the differential equation:

iS ]vn

]k1
− vgD ]g

]x1
= sv0 − Vdg −

1

2 o
i,j=2

3
]2vn

]ki ]kj

]2g

]xi ]xj
.

s13d

Since the matrix]2vn/]ki ]kj is symmetric, after a suitable
rotation of thesx2,x3d axes by the transformationxj8=R jixi

si , j =2,3d, whereR ji is the orthogonal matrix that diagonal-
izes ]2vn/]ki ]kj, assuming without loss of generalityV
=v0, Eq. s13d can be written in the canonical Schrödinger-
like form:

iS ]vn

]k1
− vgD ]g

]x1
= −

1

2
a2

]2g

]x28
2−

1

2
a3

]2g

]x38
3 , s14d

where a2 and a3 are the eigenvalues of the 232 matrix
]2vn/]ki ]kj si , j =2,3d. 3D localized waves to Eq.s14d are
expressed in terms of well-known Gauss-Hermite functions,
which are in general anisotropic fora2Þa3. These 3D local-
ized waves, which exist regardless of the sign ofa2 anda3,
represent Gaussian-like beams, with exponential localization
in the transversesy,zd plane and algebraic localization, de-
termined by the beam Rayleigh range, in the longitudinalx
directionsand hence in timed. These beams propagate undis-
torted along thex direction with anarbitrary group velocity
vg, either subluminal or superluminal, provided thatvg
Þ]vn/]kx. Such pulsed propagating Gaussian beams repre-
sent an extension, in a PC structure, of similar solutions
found in vacuumsseef18g and references thereind. In par-
ticular, the special casevg=0 leads to stationarysmonochro-
maticd Gaussian-like beams; note that the conditionvg
Þ]vn/]kx implies that such steady Gaussian beams do not
exist in a PC close to a bandgap edge, where]vn/]kx van-
ishes. Other solutions to Eq.s14d, leading tospatial 2D lo-
calized and monochromatic waves in the transversesy,zd
planesbut delocalized in the longitudinalx directiond, can be
search in the formgsx1,x2,x3d=ssx2,x3dexpsilx1d, wherel
is a propagation constant. Ifa2 and a3 have the same sign,
the functionssx2,x3d satisfies a 2D Helmholtz equation, ad-
mitting well-known Bessel-beam solutions in cylindrical co-
ordinates. Fora2Þa3, such solutions are anisotropic, and
again they represent a generalization to a PC of well-known
spatial Bessel beams in vacuum. Ifa2 anda3 have opposite
sign, one obtains a hyperbolic 2D equationsor, equivalently,
a 1D Klein-Gordon equationd, which admits to 2D X-type
localized solutions involving modified Bessel functions re-
cently studied inf9g fsee Eqs.s3ad and s4d of Ref. f9g; see
also Ref.f19gg.

Second case. The second case corresponds to the choice
vg=]vn/]kx. In this case, the leading-order approximation to
the dispersion relationfEq. s11dg should include also second-
order derivatives with respect tox1 of the band dispersion
curvevnsk0+Qd, yielding

v0 − V +
1

2 o
i,j=1

3
]2vn

]ki ]kj
QiQj = 0, s15d

where the derivatives of the band dispersion curve are calcu-
lated atk =k0. If the approximate expression ofQ1, implic-
itly defined by the quadratic equations15d, is introduced into

FIG. 1. sColor onlined sad Structure of a square lattice PCsmade
of cylinders embedded in aird and first Brillouin zone in the recip-
rocal plane, with the triangular irreducible zone with high-
symmetry pointsG, X, andM. sbd Dispersion curves of TE and TM
modes forr =0.2a ande=8.9. The blue curve in the figuresthe third
one from the bottomd corresponds to the second band for TM modes
sTM airbandd.
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Eq. s10d, one can easily show that the envelopegsx1,x2,x3d
satisfies this time the differential equation:

sv0 − Vdg =
1

2 o
i,j=1

3
]2vn

]ki ]kj

]2g

]xi ]xj
. s16d

Since the matrix]2vn/]ki ]kj is symmetric, after a suitable
rotation of the sx1,x2,x3d axes by the transformationxj8
=R jixi si , j =1,2,3d, whereR ji is the orthogonal matrix that
diagonalizes]2vn/]ki ]kj, Eq. s16d takes the canonical form:

sv0 − Vdg =
1

2
Sa1

]2g

]x18
2 + a2

]2g

]x28
2 + a3

]2g

]x38
3D , s17d

whereai si =1,2,3d are the eigenvalues of the 333 matrix
]2vn/]ki ]kj si , j =1,2,3d. The sign of the eigenvaluesai ba-
sically determines the elliptic or hyperbolic character of Eq.
s17d, and hence the nature of their solutionsssee, e.g.,f2gd. If
ai have the same sign, e.g., they are positive, forV,v0 Eq.

s17d reduces, after a scaling of axis length, to a 3D Helm-
holtz equation, which in spherical coordinates admits of lo-
calized solutions in the form of sinc-shaped wavesssee, e.g.,
f2,5gd. If, conversely, there is a sign discordance among the
eigenvaluesai, one obtains a 2D Klein-Gordon equation,
which admits of 3D localized X-type waves which have been
lengthly discussed in many worksssee, e.g.,f2,6,9g and ref-
erences thereind. In some special cases, one of the eigenval-
ues ai may vanish, which may yield further nonspreading
wave packet solutions. Notably, ifa1=0, the solution to Eq.
s17d is given by gsx1,x2,x3d=hsx1dwsx2,x3d, whereh is an
arbitrary function ofx1=x−vgt and w satisfies a 2D Helm-
holtz equation fora2a3.0, admitting Bessel beam solu-
tions, or a 1D Klein-Gordon equation fora2a3,0, admitting
2D X-type solutions. For these special solutions a cancella-
tion of temporal dispersion is attained. As the former case
sa2a3.0d extends to a PC structure the so-called pulsed
Bessel beams found in homogeneous dispersive mediaf3g,
the latter casesa2a3,0d is rather peculiar for a PC structure,

FIG. 2. sColor onlined sad Surface diagram of
PC band vnskx,kyd for the TM airband of
Fig. 1sad. sbd Sign of the Hessian H
=dets]2vn/]ki ]kjd for the TM airbandsthe con-
tinuous lines correspond toH=0d.

FIG. 3. Gray-scale plots of localized propa-
gating waves as obtained from Eq.s18d for a
Gaussian spectral amplitude withl=2a
and for k0=s1.6/adsukx+ukyd and V=vnsk0d
.0.5338s2pc/ad ssee textd. In sad vg= u=kvnu
.0.0532c shyperbolic localizationd, whereas in
sbd vg=c sparabolic localizationd. The bottom fig-
ures show, for the two cases, the corresponding
dispersion relationQ1=Q1sQ2d as numerically
computed by solving Eq.s11d.
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which realizes a bidiffractive propagation regimef9g, i.e.,
positive and negative diffraction along the two transverse
directionsy andz. Instead of pulses with a transverse Bessel
beam profile, in this case one obtains a transverse X-shaped
beam with an arbitrary longitudinalstemporald profile that
propagates without spreading.

We note that, though our analysis has been focused to a
3D PC, similar results can be obtainedmutatis mutandisfor
the lower-dimensional case of a 2D PC. In this case, not
considering out-of-plane propagation, the fields depend
solely on the two spatial variablesx and y defining the PC
plane, and the most general solution to the Wannier function
envelope equations8d propagating undistorted with a group
velocity vg along thex axis reads

gsx1,x2d =E dQ2 GsQ2dexpsiQ1x1 + iQ2x2d, s18d

wherex1=x−vgt, x2=y, G is an arbitrary spectral amplitude,
andQ1=Q1sQ2d is implicitly defined again by the dispersion
relation given by Eq.s11d. Depending on the value of the
group velocityvg as compared to]vn/]kx, the scenario dis-
cussed for the 3D case still holds. In particular, forvg differ-
ent from sand enough far fromd ]vn/]kx, the lowest order
differential equation describing undistorted wave propaga-
tion is a 1D Schrödinger equation—given by Eq.s14d where
the last term on the right-hand side is dropped—which ad-
mits of 1D Gauss-Hermite solutionssparabolic localization
regimed. Conversely, forvg=]vn/]kx, the lowest-order dif-
ferential equation describing undistorted spatiotemporal
wave propagation is given by Eq.s17d provided that the
terms containing the derivatives] /]x38 are dropped. In this
case, Eq.s17d corresponds to either a 2D Helmholtz equation
or to a 1D Klein-Gordon equation, depending whether the
HessianH=dets]2vn/]ki]kjd is positive or negative. In the
former caseselliptic localization regimed, typical localized
solutions in cylindrical coordinates are expressed by Bessel
functions of first kind, whereas in the latter caseshyperbolic
localization regimed X-type wave localization is achieved
ssee, e.g.f9,19gd.

As an example of undistorted spatiotemporal wave propa-
gation, let us consider a simple 2D PC structure made of a
square lattice of cylinders, with radiusr and perioda, em-
bedded in airfsee Fig. 1sadg. A few low-order dispersion
bands for TE and TM modes of the PC, as obtained by a
standard plane-wave expansion technique, are shown in Fig.
1sbd for parameter values corresponding to aluminase

=8.9d and r =0.2a ssee also Fig. 2 in Chap. 5 of Ref.f20gd.
The computation and shape of Wannier functions for a 2D
square lattice PC have been reported in Ref.f15g; here we
focus on the construction of undistorted spatiotemporal lo-
calized waves of the Wannier function envelope by a direct
numerical computation of the integral entering in Eq.s18d,
which requires solely the numerical computation of the band
dispersion curvevnskx,kyd and—through Eq.s11d—of the
dispersion relationQ1=Q1sQ2d. As an example, let us con-
sider the second TM band in Fig. 1sbd, the so-called TM
air-band; the entire 2D band surfacevnskx,kyd of this band is
shown in Fig. 2sad. Figure 2sbd shows the regions in the
reciprocalk space within the first Brillouin zone correspond-
ing to H.0 selliptic localizationd or H,0 shyperbolic local-
izationd. For a fixedk0 point, parabolic localization, support-
ing stationary or propagating 1D Gaussian-like beams, is
attained whenevervg is far from =kvn; for vg==kvn, local-
ization is instead of hyperbolic or elliptic kind depending on
whetherH,0 or H.0. As an example, Fig. 3 shows ex-
amples of undistorted waves as obtained from Eq.s11d at
point k0=s1.6/adsukx+ukyd—on theGM diagonal, where the
group velocity is directed along the bisection line of the
sx,yd plane—for two different values of the group velocity
and assuming a Gaussian spectral amplitude profileGsQ2d
=expf−slQ2d2g. In the same figure, the dispersion relations
Q1=Q1sQ2d, as obtained by numerical solution of Eq.s11d,
are also depicted. Note that atk =k0, one has=kvn.
−0.0532cn and H,0, wheren=s1/Î2dsux+uyd is the unit
vector of the bisection line ofsx,yd plane. Figure 3sad corre-
sponds tovg==kvn, leading—as expected for a hyperbolic
localization regime—to an X-shaped wave. Conversely, in
Fig. 3sbd we have chosen the group velocityvg=−cn, leading
to a Gaussian-like beam propagating at a luminal velocity.

IV. CONCLUSIONS

In conclusion, a general analysis of wave packet propaga-
tion in PCs, based on a Wannier function expansion ap-
proach, has been presented, and an exact envelope equation
describing undistorted propagation of spatiotemporal local-
ized waves has been derived. An asymptotic analysis of the
envelope equation shows that a wide class of localizedsei-
ther spatial or spatiotemporald waves exist, including propa-
gating Gaussian beams, 2D and 3D X-type waves, sinc-
shaped waves, pulsed Bessel beams, and pulsed 2D X waves,
some of which have been recently studied with reference to
some specific modelsf8,9g.
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