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Localized and nonspreading spatiotemporal Wannier wave packets in photonic crystals
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A general analysis of undistorted propagation of localized wave packets in photonic crystals based on a
Wannier-function expansion technique is presented. Different kinds of propagating and stationary spatiotem-
poral localized waves are found from an asymptotic analysis of the Wannier function envelope equation.
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|. INTRODUCTION and 3D PCs based on the use of Wannier functions, which

Spatiotemporal broadening of localized wave packeté‘ave been introduced in the context o_f PCS_ to treat Iogalized
with finite energy due to the effects of diffraction and disper-modes, such as the bound states of impurities or lattice de-
sion is a universal and challenging phenomenon in anyects[13-13. A general asymptotic analysis of the envelope
physica| context in\/o|ving wave propagation_ If the finite equation for the Wannier functions allows one to capture the
energy constraint is left, special spatiotemporal waves with £xistence and properties of localized nonspreading wave
certain degree of localization in space and/or in time, capablpackets in PCs in terms of localized solutions of canonical
of propagating free of diffraction and/or temporal dispersion,wave equations, such as the Schrédinger equation, the Helm-
can be constructed. Localized waves of this type includeholtz equation and the Klein-Gordon equation.
among others, Bessel beams, focus-wave modes, X-type
waves, and pulsed Bessel beds5|. Though these waves
can be only approximately realized in practice, several ex- Il WANNIER FUNCTION ENVELOPE EQUATION

periments in acoustic and optical fields have been reported so The starting point of the analysis is provided by the vec-

far showing nearly-undistorted localized wave propagation, . . SR .
As the existence of undistorted progressive localized wavelflial wave equation for the magnetic fiekl=H(r,t) in a

in vacuum has been known for many years and lead to longZC With a periodic relative dielectric constastt),
standing studiefl,2], with special attention devoted toward
their superluminal or subluminal character and to their finite-
energy realizations, in the past few years these studies have
been extended to dispersive optical mg@as], and remark-

ably the spontaneous generation of localized and nonspreagherec is the speed of light in vacuum. In writing E¢f),

ing wave packets mediated by optical nonlinearities has beejye assumed that the material dispersion can be neglected,
predicted 6] and experimentally observ¢d] using standard \hich is a reasonable assumption since in PCs with a rela-

femtosecond pulsed lasers. Very recently, in a few workgjyely strong contrast index band dispersion broadly domi-
[8-10] the issue of spatial or spatiotemporal wave localiza-

o - ] - nates over intrinsic material dispersion. To study the propa-
et e e aton of  Spaolemporal vave packt, we can adopt e
Y Xp g we . method of the Wannier functions, which is commonplace in

dispersive properties of photonic crystdRC9 [11,12 to

induce novel spatiotemporal wave localization mechanism € study of the quasi-classical electron dynamics in solids

has been proposed. Specifically, these studies have been 052%’17] and recen.tly F‘;"Cpp“e‘_jht% SftUdélcica”\i\?d medeS and
cerned with localization of Bose-Einstein condensates in &€'€Ct Structures in s with defe¢ts3,14. We refer ex-

one-dimensional optical lattice without any trapping Iooten_pI|C|tIy to a 3D PC structure, however a similar analysis can

tial [8], with two-dimensional(2D) spatial Bessel X waves in be deve]oped for a 2D PC. Let Us first consider the mono-
weakly coupled 2D waveguide arrays showing bidispersiv hromatic Bloch—typ_e solutions to qu) at f_requer_myag,
properties]9] and with three-dimensiondBD) out-of-plane (r,)=Hs(r)exp-iot), wherek lies in the first Brillouin
X-wave localization in 2D PCEL0]. Spatiotemporal waves 20Nne of the reciprocak space,w=wy(k) is the dispersion
considered in these works rely on some specific models angtfve for thenth band, andHy ,(r) are the band modes,
often usead hoc approximations, e.g., reduced coupled- Satisfying the conditionH, (r +R)=Hy 4(r)exp(ik -R) for
mode equations, paraxiality, weak-coupling limit, and con-any lattice vectoR of the periodic dielectric function. The
tinuum approximations. So far, a general framework to capBloch functions Hy .(r) are normalized such that
ture spatiotemporal wave localization and propagation ifH:n'|Hin)=Vazdyn 8k’ —k), whereVg,=(2m)3/V is the
PCs and the derivation of a general wave equation, valio?volume of the first Brillouin zone in the reciprocal space and
regardless of the specific system under investigation and is the volume of the real-space unit cell. For each band of
with a wide range of applicability, is still lacking. the PC, one can construct a Wannier functMh(r) as a

The aim of this work is to provide a general analytical localized superposition of Bloch functions of the band ac-
framework to study spatiotemporal wave propagation in 2Dcording to
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Wi(r) = Ve )

BZ

f dk Hk’n(r).
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In the superposition, the phase of Bloch functidtis, can

be chosen such that the Wannier functiéh(r) is strongly
localized around =0 with an exponential decay far from
=0. The Wannier functions satisfy the orthogonality condi-
tions (W, (r =R") [W(r =R))= 6, 6r g, and the following
relationship can be easily proven:

1
<Wnr(r - R,)| V X (; V X )|Wn(l’ - R)> = 5n]nran‘Rr_R,

3

where 6,r is the Fourier expansion coefficient of
the  dispersion  curve wﬁ(k) of the band,
nr=(1/Vg2) [5z dk w?(K)exp(-ik -R), ie. w?(k)

=2rb6hr explik -R). We then look for a spatiotemporal wave
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IIl. SPATIAL AND SPATIOTEMPORAL
LOCALIZED WAVES

The most general solution to the Wannier-function enve-
lope equation(6) is given by a superposition of functions
(r, £t), wherey(r ,t) is a solution to the wave equation:

J

2 = 190 )
We are now interested on the search for localized solutions to
Eq. (7) such thatly| corresponds to a wave propagating un-
distorted with a group velocity,. To this aim, let us set
H(r,t)=g(r ,t)expliky-r —iQt), wherekg is chosen inside the
first Brillouin zone in the reciprocal space and the frequency
Q) is chosen close tgbut not necessarily coincident wjth
wo=wp(Kg). The envelopg then satisfies the wave equation

o
if = [wn(ko - iV,) - 0]g. ®)

packet, which is a solution to E@L), as a superposition of \ye first note that, ifg varies slowly with respect to the

translated Wannier functions localized at the different lattic
points R of the periodic structure, with amplitudd€$R,t)
that depend on the lattice poiRt and can vary in time, i.e.,
we set

H(rt) = f(R,HOW,(r —R). (4)
R

Note that, as we consider a pure periodic structure withou

defects and neglect perturbation terms in Eqg.(e.g., non-

linearities, coupling among different bands does not occur_
and in Eq.(4) the sum can be taken over a single band, of~

espatial variables, at leading order one can expaag(kg

-iV,) up to first order arouné,; taking )= w,, one obtains
a9l t+V,w,-V,g=0, i.e., one retrieves the well-known re-
sult for which an arbitrary 3D spatially-localized wave
packet travels undistorted, at leading order, with a group ve-
locity given by V,w,. Nevertheless, higher-order terms are
generally responsible for wave packet spreading, both in
pace and time. In order to find propagation-invariant enve-
ope wavesven when dispersive terrage accounted for, let
us assume, without loss of generality, th@tw,/dky)y,
(awn/&kz)kozo, i.e., let us choose the orientation of tke

indexn. Coupled-mode equations for the temporal evolution@Xis such that the wave packet group veloyawy, is di-

of the amplitudesf(R,t) of Wannier functions at different
lattice points can be obtained after substitution of @ginto
Eq. (1), taking the scalar product witt/(r —R) and using

rected along this axis, and let us look for a propagation-
invariant solution to Eq(8) of the formg=g(x;,X,,X3), with
X1=X—vgt, X,=Y, andxs=z, traveling along thex axis with a

the orthogonality conditions of Wannier functions, togetherdrOUP Velocityug, which is left undetermined at this stage.

with Eq. (3). One obtains

Pf(R,1)

(?tz

+2 b r (R, =0. (5

R’

The solution to the coupled-mode equatidbs can be ex-
pressed a$(R,t)=f(r =R,t), where thecontinuousfunction
f(r,t) of spacer and timet satisfies the partial differential
equation:

P (r 1)
(?tz

+wX(-iV,)f(r,t)=0, (6)

and wﬁ(—in) is the operator obtained after the substitution
k—-iV, in the Fourier expansion ob3(k). It should be
noted that the differential equation for tlsentinuous enve-
lope f(r,t) of the Wannier function wavepackgtq. (4)], as
given by Eq.(6), is exact, and for any band of the PC an
envelope equation can be written, the specific details of th
band entering both in the dispersion curwﬁ(k) and in the
shape of the corresponding Wannier functidh, [Eq. (2)].

The functiong then satisfies the following equation:

. d .
- |Ug£ =[wn(ko =iV, —Q]g,

9

whose solution can be written formally as

g(xl,xz,x3)=fdQ2 dQ; G(Q2,Qr)expliQ -x). (10

In Eq (10), X:(Xl:X_Ugt,XZ:y,X3:Z), Q:(Q11Q21Q3)1 G
is an arbitrary spectral amplitude, a@d=0Q,(Q,,Q3) is im-
plicitly defined by the followingdispersion relation:

wn(ko+Q) —Q ~v4Q; =0.

To avoid the occurrence of evanescef@xponentially-
growing) waves, the integral in Eq10) is extended over the
values of(Q,,Q;) such thatQ,, obtained after solving Eq.
(11), turns out to be real-valued. We note that, foraabi-
trary spectral amplitudeés, Eq. (10) represents aexactso-
@ution of the Wannier-function envelope equation, which
propagatesundistortedwith a group velocityv,, once the
proper band dispersion curwe,(k) of the PC and corre-

11
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(a) . b M [ dwn o 13 P, &g
—vg) = (wo= V-2
0900 Ky Xy 225 ki oK; Ix; IX;
000
Toeee|- X % (13
19000 Since the matrixw,/dk; ok; is symmetric, after a suitable
+aH rotation of the(x,,xs) axes by the transformatioq =R;;x;
(b) (i,j=2,3), whereR; is the orthogonal matrix that diagonal-
hd izes Pw,l ok dk;, assuming without loss of generalit
0.6 =wy, EQ. (13) can be written in the canonical Schrodinger-
> 0.5\ like form:
S 04 P a 1 #g 1 &
N [ dw g g g
N . |( n_ )—:—— — - —a3—s, 14
g 0 ok 9 aw 2%%axi2 2% R (14
0.2
0.1 where a, and a5 are the eigenvalues of thex2 matrix
0f - £ > Pyl 3k dk; (i,j=2,3). 3D localized waves to Eq14) are

expressed in terms of well-known Gauss-Hermite functions,

FIG. 1. (Color onling (a) Structure of a square lattice R@ade ~ Which are in general anisotropic fas, # a3. These 3D local-
of cylinders embedded in aiand first Brillouin zone in the recip- 1zed waves, which exist regardless of the sigrugfand e,
rocal plane, with the triangular irreducible zone with high- represent Gaussian-like beams, with exponential localization
symmetry pointd”, X, andM. (b) Dispersion curves of TE and TM  in the transversgy,z) plane and algebraic localization, de-
modes for =0.2a ande=8.9. The blue curve in the figuféhe third ~ termined by the beam Rayleigh range, in the longitudinal
one from the bottomcorresponds to the second band for TM modesdirection(and hence in time These beams propagate undis-
(TM airband. torted along thec direction with anarbitrary group velocity

vy, either subluminal or superluminal, provided tha}

sponding dispersion relatiofi1) are computed, e.g., by nu- # dw,/dky. Such pulsed propagating Gaussian beams repre-
merical methods. Fosomespecific choices of the spectral Sent an extension, in a PC structure, of similar solutions
amplitudeG, in addition to undistorted wave propagation afound in vacuum(see[18] and references therginin par-
certain degree of spatiotemporal wave localization can bécular, the special casg=0 leads to stationarymonochro-
obtained. It is worthwhile to get some explicit examples,matic Gaussian-like beams; note that the conditiop
though approximate, of such 3D localized waves, admitting? dw,/ dk, implies that such steady Gaussian beams do not
the integral representation given by Efj0), and relate them €Xist in a PC close to a bandgap edge, whewg/ dk, van-
to already known localized solutions to canonical waveishes. Other solutions to E¢l4), leading tospatial 2D lo-
equationg2]. To this aim, we develop an asymptotic analysiscalized and monochromatic waves in the transvesse)
of Eq. (11) by assuming that the spectral amplituGeis  plane(but delocalized in the longitudinaldirection, can be
nonvanishing in a narrow interval arou@3=Q5=0, so that, ~Search in the forng(xy,X;,X3) =S(Xz,X3)eXpiAXy), Where
for Q) close tow,, the value 0fQ, as obtained from Eq11), is a propagation constant. #f, and a3 have the same sign,
is also close taQ;=0. In this case, an approximate expres-the functions(x,,xs) satisfies a 2D Helmholtz equation, ad-
sion for the dispersion relatio®;=Q;(Q,,Q3) can be ob- mitting well-known Bessel-beam solutions in cylindrical co-
tained by expanding in Eq11) the band dispersion curve ordinates. Fora,# a3, such solutions are anisotropic, and
w,(ko+Q) at aroundk, We should distinguish two cases, again they represent a generalization to a PC of well-known
depending on the value of the group velocity which is ~ spatial Bessel beams in vacuumalf and a; have opposite
basically a free parameter in our analysis. sign, one obtains a hyperbolic 2D equati@n, equivalently,

First case The first case corresponds to the choice of aa 1D Klein-Gordon equatign which admits to 2D X-type
group velocity v, different from (and enough far from localized solutions involving modified Bessel functions re-
dw,l dk,. In this case, the leading-order terms entering in Eqcently studied inf9] [see Eqs(3a) and (4) of Ref.[9]; see
(11) after a power expansion af,(ko,+Q) are quadratic in also Ref.[19]].
Q,, Q; and linear inQ,; precisely, one has Second caseThe second case corresponds to the choice
vg=dw,/ K. In this case, the leading-order approximation to
the dispersion relatiofEq. (11)] should include also second-
order derivatives with respect tg of the band dispersion

3

<%—09>Q1+w0—0+22 Ton QQ;=0, (12

dky 2722 ki ok; curve wy(ko+Q), yielding
1 > Pwp, _
wherek =k, for i=1,2,3 and thelerivatives of the band wp— )+ > > MQin =0, (15)
el i,j=1 U™ OBy

dispersion curve are calculatedlatk,. If the approximate

expression o, given Eq.(12), is introduced into Eq(10),  where the derivatives of the band dispersion curve are calcu-
one can easily show that the envelagie ,x;,X3) satisfies  lated atk =k,. If the approximate expression q;, implic-

the differential equation: itly defined by the quadratic equatiéh5), is introduced into
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FIG. 2. (Color online (a) Surface diagram of
PC band wy(ky,ky) for the TM airband of
Fig. 1@. (b) Sign of the HessianH
=delPw,/ dk; dk;) for the TM airband(the con-
tinuous lines correspond td=0).

Eg. (10), one can easily show that the envelap&;,X,,X3)
satisfies this time the differential equation:

13, Rw, &g

—Q)g=ZY —n 25 16
(o= {)g 2i§15kiakjaxiaxj (18

Since the matrix®w,/ ok dk; is symmetric, after a suitable

rotation of the (xq,x,,X3) axes by the transformatiowj’

=R;x (i,j=1,2,3, whereR;; is the orthogonal matrix that
diagonalizesPw,/ dk; dk;, EQ. (16) takes the canonical form:

1/ &g &g &g
(wo=Q)g= E(alax_iz + azax—éz + asax_;f’ , (17
whereq; (i=1,2,3 are the eigenvalues of thex33 matrix
Pwnl ok dk; (i,j=1,2,3. The sign of the eigenvalues ba-

(17) reduces, after a scaling of axis length, to a 3D Helm-
holtz equation, which in spherical coordinates admits of lo-
calized solutions in the form of sinc-shaped wae=, e.g.,
[2,5]). If, conversely, there is a sign discordance among the
eigenvaluesq;, one obtains a 2D Klein-Gordon equation,
which admits of 3D localized X-type waves which have been
lengthly discussed in many worksee, e.g.[2,6,9] and ref-
erences therejnin some special cases, one of the eigenval-
ues «; may vanish, which may vyield further nonspreading
wave packet solutions. Notably, if; =0, the solution to Eq.
(17) is given by g(xq,%s,%3) =h(X;) ¢(X5,X3), whereh is an
arbitrary function ofx;=x-v4t and ¢ satisfies a 2D Helm-
holtz equation fora,a3>0, admitting Bessel beam solu-
tions, or a 1D Klein-Gordon equation fesaz <0, admitting

2D X-type solutions. For these special solutions a cancella-
tion of temporal dispersion is attained. As the former case

sically determines the elliptic or hyperbolic character of Eq.(a,a3>0) extends to a PC structure the so-called pulsed

(17), and hence the nature of their solutiasse, e.g[2]). If
a; have the same sign, e.g., they are positive {I6t v, EQ.

(b)

-10 0 10
x/a x/a
15 0
-0.05
S
5 -0.1
0.5
0.15
9 0 1 02 0
aQ, a@,

Bessel beams found in homogeneous dispersive njé&dia
the latter caséa,a3<0) is rather peculiar for a PC structure,

FIG. 3. Gray-scale plots of localized propa-
gating waves as obtained from E(L8) for a
Gaussian spectral amplitude withx=2a
and for ko=(1.6/a)(uix+Uyy) and Q=wy(Ko)
=0.533827c/a) (see text In () vy=|Viwyl
=0.053Z (hyperbolic localizatiojy whereas in
(b) vg=c (parabolic localization The bottom fig-
ures show, for the two cases, the corresponding
— dispersion relationQ;=Q;(Q,) as numerically
computed by solving Eq11).
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which realizes a bidiffractive propagation regirf@], i.e., =8.9 andr=0.2a (see also Fig. 2 in Chap. 5 of R¢R0]).
positive and negative diffraction along the two transverseThe computation and shape of Wannier functions for a 2D
directionsy andz. Instead of pulses with a transverse Besselsquare lattice PC have been reported in R&5]; here we
beam profile, in this case one obtains a transverse X-shapédcus on the construction of undistorted spatiotemporal lo-
beam with an arbitrary longitudingtempora) profile that  calized waves of the Wannier function envelope by a direct
propagates without spreading. numerical computation of the integral entering in E§8),
We note that, though our analysis has been focused to which requires solely the numerical computation of the band
3D PC, similar results can be obtaineditatis mutandisor  dispersion curvew,(ky,ky) and—through Eq(11)—of the
the lower-dimensional case of a 2D PC. In this case, notlispersion relatiorQ;=Q;(Q,). As an example, let us con-
considering out-of-plane propagation, the fields dependider the second TM band in Fig(k), the so-called T™M
solely on the two spatial variablesandy defining the PC  air-band; the entire 2D band surfaeg(ky,k,) of this band is
plane, and the most general solution to the Wannier functioghown in Fig. 2a). Figure Zb) shows the regions in the
envelope equatiofB) propagating undistorted with a group reciprocalk space within the first Brillouin zone correspond-
velocity vg along thex axis reads ing to H >0 (elliptic localization or H< 0 (hyperbolic local-
ization). For a fixedk, point, parabolic localization, support-
g(xleZ):fdQZ G(Q,)expiQ X, +iQu%y), (18) ing .stationary or prppagating 1D Qaussizin—like beams, is
attained whenevey, is far from Vyw,; for vy=V,w,, local-

. ) , ization is instead of hyperbolic or elliptic kind depending on
wherex;=x-vgt, X,=y, G is an arbitrary spectral amplitude, \\hetherH<0 or H>0. As an example, Fig. 3 shows ex-
andQ,=Q,(Q,) is implicitly defined again by the dispersion ympjes of undistorted waves as obtained from @4) at
relation givgn by Eq(11). Depending on the value' of .the pointko=(1.6/2)(Uj,+Uy,)—on thel'M diagonal, where the
group velocityvy as compared t@w,/ Jk,, the scenario dis-  groyn velocity is directed along the bisection line of the
cussed for the 3D case still holds. In particular, fgiffer- (x,y) plane—for two different values of the group velocity
ent from (and enpugh far frqm‘?‘"”/&.kx' the lowest order 54 assuming a Gaussian spectral amplitude pr&fil@,)
differential equation describing undistorted wave propaga—:exd_()\Qz)g]_ In the same figure, the dispersion relations

tion is a 1D Schrodinger equation—given by Et4) where _ . : :
the last term on the right-hand side is dropped—which ad-Ql_Ql(QZ)’ as obtained by numerical solution of HqJ),

mits of 1D Gauss-Hermite solutioriparabolic localization a[)eoa\!as;: dep(;c:'ed.o Nothe thai ?7%@ one hgthkwn:.
regimg. Conversely, forv,=dw,/dk,, the lowest-order dif- ~0.0532n an . <. » W eren=(1/y )(UXJF.UV) 'S the unit
ferential equation describing undistorted spatiotemporaYector of the bisection I|r_1e df.y) plane. Figure @) corre- .
wave propagation is given by Eq17) provided that the SPONdS tovg=Vyaw,, leading—as expected for a hyperbolic
terms containing the derivative/dx, are dropped. In this |ocalization regime—to an X-shaped wave. Conversely, in
case, Eq(17) corresponds to either a 2D Helmholtz equation 19 3() we have chosen the group velocity=—cn, leading
or to a 1D Klein-Gordon equation, depending whether thd© a Gaussian-like beam propagating at a luminal velocity.
HessianH=de(#w,/ dkidk;) is positive or negative. In the
former case(elliptic localization regimg typical localized
solutions in cylindrical coordinates are expressed by Bessel In conclusion, a general analysis of wave packet propaga-
functions of first kind, whereas in the latter cabgperbolic  tion in PCs, based on a Wannier function expansion ap-
localization regimg X-type wave localization is achieved proach, has been presented, and an exact envelope equation
(see, e.9[9,19)). describing undistorted propagation of spatiotemporal local-
As an example of undistorted spatiotemporal wave propaized waves has been derived. An asymptotic analysis of the
gation, let us consider a simple 2D PC structure made of @nvelope equation shows that a wide class of localized
square lattice of cylinders, with radiusand perioda, em-  ther spatial or spatiotempojalaves exist, including propa-
bedded in air[see Fig. 18)]. A few low-order dispersion gating Gaussian beams, 2D and 3D X-type waves, sinc-
bands for TE and TM modes of the PC, as obtained by @&haped waves, pulsed Bessel beams, and pulsed 2D X waves,
standard plane-wave expansion technique, are shown in Figome of which have been recently studied with reference to
1(b) for parameter values corresponding to alumi@ some specific models8,9].
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